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Abstract

The stability of the parallel time-dependent boundary layer adjacent to a suddenly heated vertical wall is

described. The ¯ow is investigated through experiments in water, through direct numerical simulation and also
through linear stability analysis. The full numerical simulation of the ¯ow shows that small perturbations to the
wall boundary conditions, that are also present in the experimental study, are responsible for triggering the
instability. As a result, oscillatory behaviour in the boundary layer is observed well before the transition to a steady

two-dimensional ¯ow begins. The properties of the observed oscillations are compared with those predicted by a
linear stability analysis of the unsteady boundary layer using a quasi-stationary assumption and also using non-
stationary assumptions by the formulation of parabolized stability equations (PSE). # 1999 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

An understanding of transient natural convection is

of great importance in industrial applications where

sudden changes in the surface boundary conditions can

cause the heat transfer characteristics of a device to

change signi®cantly. Such situations arise for example

in cooling systems and in crystal growth procedures.

This paper focuses on the transient ¯ow induced by

the sudden heating of a vertical plate. Idealised in an

in®nite ¯ow domain, heat transfer takes place purely

by conduction and the one-dimensional form for the

Navier±Stokes and energy equations is satis®ed. In

practice, ®nite geometry means that the symmetry is

broken at the bottom of the heated element. The e�ect

of this leading edge is propagated downstream pro-

ducing a steady ¯ow with a small vertical temperature

gradient and a small horizontal velocity component is

present. The analysis by Siegel [1] was the ®rst to

describe the behaviour of the leading edge e�ect in this

way. Various experimental studies (summarized by

Gebhart et al. [2]) have con®rmed this basic ¯ow

regime. Other studies have attempted to predict the

velocity at which the leading edge signal propagates up

through the ¯ow [3±5].

A study by Joshi and Gebhart [6] examined exper-

imentally the breakdown of the one-dimensional ¯ow

using a constant heat ¯ux boundary condition on a

semi-in®nite vertical wall. By making localised

measurements of temperature and velocity, they found

that the temperature and velocity traces deviated from
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the one-dimensional solution simultaneously at all

downstream locations. Hence deviations from the one-
dimensional ¯ow occurred at some locations before the

arrival of the leading edge signal. This breakdown of
the one-dimensional ¯ow suggests that it may become

unstable before the leading edge signal arrives.
However, this breakdown has not been observed pre-
viously in numerical studies of transient ¯ow with iso-

thermal or constant ¯ux boundary conditions [5,7,8].
Since no instability has been observed in numerical

simulations this indicates that any instability, where it
exists, must be convective rather than absolute in

nature [9]. Hence, any disturbances in the numerical
simulation that occur in an unstable region of the ¯ow

may not be observed because they are carried away to
a stable region of the ¯ow before their amplitude is
great enough to be observed. In the experiments the

natural disturbance level may be higher and hence may
allow the disturbances to be observed.

Considering the initial-value problem for a small dis-
turbance super-imposed on a parallel ¯ow, one can

®nd the general solution for an initial disturbance that
consists of a sinusoidal input with a constant fre-

quency at some location in space. The solution is given
by the homogeneous linear stability equation with zero

temporal ampli®cation, and the frequency is given by
the input forcing. This problem is known as the spatial

signalling problem [9]. It is also useful in ¯ow situ-

ations where the ¯ow is steady but weakly non-parallel
where, by making certain approximations, a spatial

growth rate and wavenumber that vary slowly in space
can be found. An alternative problem for a steady par-

allel ¯ow is the temporal signalling problem. In this
case the forcing is for only an instant in time but over
the whole ¯ow domain in a sinusoidal function in

space with a constant wavelength. The solution to this
problem is given by the solution to the homogeneous

stability equations with zero spatial ampli®cation and
the wavelength of the input forcing [10]. In a time-

dependent parallel ¯ow, where the temporal variation
is slow, the temporal signalling problem may be

extended by ®nding a temporal growth rate and fre-
quency that vary slowly in time.

In considering the stability of the parallel ¯ow adja-
cent to a suddenly heated wall Krane and Gebhart [11]
compared the frequencies observed by Joshi and

Gebhart [6] to the results of a quasi-stationary linear
stability analysis. They found that the experimentally

observed frequencies lay above the frequency which
had the maximum ampli®cation rate predicted from

their stability analysis. The use of the quasi-static
assumption was cited as the probable cause for this

discrepancy.
Here we examine the ¯ow of water adjacent to a ver-

Nomenclature

a S
q temporal ampli®cation from Eq. (27)

A amplitude of the sinusoidal perturba-
tion

Ar amplitude of the random perturbation
B(k0,Grt)

�Grt
Grt0

o 0i�G � dG
g acceleration due to gravity

Grt U0d/n=gbDTd 3/n 2

H cavity height
Pr n/k
R random value
Ra gbDTH 3/nk
S � heat source
t � dimensional time

tc t �H 2/n
T � dimensional temperature
T
-

(T �ÿT0)/DT
Th temperature of the cavity wall
T0 ambient temperature
T
-
(y, t ) base¯ow temperature ®elds

T '(x, y, t ) perturbations temperature ®elds
u � dimensional vertical velocity
u- u �/U0

U0 gbDTd 2/n

v � dimensional horizontal velocity
x � dimensional vertical ordinate
xc x �/H
y y �/d
y � dimensional horizontal ordinate
yc y �/H

Greek symbols
b coe�cient of thermal expansion

d
���������
4kt0
p

Dt � timestep
DT ThÿT0

Z y�=
���������
4kt�
p

k the thermal di�usivity
n kinematic viscosity
�c � y, t� base¯ow streamfunction
c '(x, y, t ) perturbation streamfunction
ô �t� complex frequency
oi (t ) exponential growth rate in time

or (t ) the frequency
o S

q frequency from Eq. (28)
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tical wall where the temperature of the wall is abruptly
raised above that of its isothermal surroundings. The

¯ow is examined experimentally, then using a full
numerical simulation of the Navier±Stokes equations,
and ®nally through linear stability analysis. The exper-

imental setup is described in Section 2. A time series of
temperature measurements at various locations within
the boundary layer are taken with fast response ther-

mistors. The numerical method is described in Section
3. Three di�erent disturbance forcing modes are
utilised in the ¯ow simulations. Firstly a zero disturb-

ance level is used which allows the simulation of the
¯ow in the absence of convective instabilities.
Perturbations are then introduced through continuous
random heat sources throughout the boundary layer.

This facilitates the comparison to the disturbance
structures seen in experiments. Finally, a perturbation
using a pulsed heat input at the start of the simulation

with a sinusoidal structure in space is applied. This
allows direct comparison to linear stability studies. The
linear stability equations are described in Section 4.

Stability equations using a quasi-stationary assumption
are equivalent to the Orr±Sommerfeld equations (OSE)
that arise by making parallel ¯ow assumptions for a

steady ¯ow. The parabolized stability equations (PSE)
are developed for a non-stationary parallel ¯ow. These
equations are analogous to the non-parallel parab-
olized stability equations used for stationary but

spatially developing ¯ows. The combined results are
presented in Section 5 and discussed in Section 6.

2. Experimental setup

The experimental rig which models the semi-in®nite
plate was constructed from an existing facility pre-
viously used for experiments in a side-heated square

cavity (for details of that cavity, see Patterson and
Arm®eld [12]). Therefore, only a brief description is
given here.

The cavity containing the working ¯uid is 24 cm
wide by 31.5 cm high and 50 cm in the transverse
dimension. One of the side walls of the cavity serves as

the model for the semi-in®nite plate. It consists of a
24 � 50 cm sheet of copper of thickness 1 mm,
smoothly joined at its lower edge to a 7.5 � 50 cm
sheet of PVC of thickness 1.5 cm. The leading edge,

being the lower edge of a semi-®nite plate, is modelled
by the smooth joint between the copper and the per-
spex sheets. Adjacent to the copper wall is a large

reservoir containing heated water. This reservoir is sep-
arated from the copper wall by a moveable gate, leav-
ing an air gap between the gate and the copper plate.

On initiation, the gate is raised pneumatically, so that
the heated ¯uid ¯oods against the copper wall. The
conduction timescale for the copper wall is less than 10

ms, much shorter than the setup time for the thermal
boundary layer. Hence, the desired step change in the

thermal boundary condition is well approximated. The
water in the reservoir is stirred vigorously by immer-
sion heaters which ensures that the reservoir remains

well mixed and that the temperature distribution along
the plate remains almost constant in time and in
spatial distribution. Through the additional use of an

immersion cooler, the temperature in the reservoir is
held constant to about 20.18C. However, small ¯uctu-
ations in the thermal boundary condition are still pre-

sent.
Inside the boundary layer adjacent to the copper

plate, the temperature ¯uctuations are measured by
using fast response thermistors. These thermistors have

a response time better than 7 ms and are inserted into
the ¯uid at di�erent locations. For the measurements
discussed here, they were located at heights above the

leading edge and distance away from the copper wall
of (11.75, 0.2 cm), (13.95, 0.3 cm) and (16.65, 0.3 cm),
respectively. Their resolution is about 20.006 K. The

temperature of the copper wall itself was measured by
three ¯at thermistors that were directly attached to the
outside of the plate. Some of the measurements are

discussed and compared to the numerical simulations
in Section 5 below.

3. Numerical analysis

The ¯ow con®guration is a square cavity of height
H. The initial temperature, T � within the cavity is uni-
form and equal to T0 and the vertical and horizontal
velocities, u � and v �, are zero. The ¯ow is initiated by

raising the temperature of the left-hand-side wall to Th

at time t �=0. The right-hand-side wall is maintained
at T0 and the top and bottom walls have adiabatic

thermal conditions. The equations solved are the two-
dimensional Navier±Stokes and energy equations with
the Boussinesq approximations,
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where the origin of the coordinate system is at the
base of the hot wall, and x � and y � are the vertical

and horizontal ordinates, respectively. Here, n is the
kinematic viscosity, g the acceleration due to gravity, b
the coe�cient of thermal expansion and k the thermal
di�usivity. Using the length, velocity and temperature

scales H, n/H and DT=ThÿT0, respectively, the two
non-dimensional parameters, the Rayleigh number,
Ra0gbDTH 3/nk and the Prandtl number Pr0n/k
arise and the non-dimensional co-ordinates are given
by xc=x �/H, yc=y �/H and tc=t �H 2/n. The heat
source term S � is zero except when arti®cial pertur-

bations are introduced. The applicability of the two-
dimensional code to the cavity ¯ow has also been
recently explored by SchoÈ pf et al. [15] where the nu-

merical calculations were compared to shadowgraph
images of a similar ¯ow.
The non-dimensionalised Navier±Stokes equations

are solved numerically using an implicit second-order

time integration and a ®nite volume spatial discretis-
ation on a non-staggered mesh. The procedure is that
described by Patterson and Arm®eld [12] with further

details provided in [13] and [14]. Grid re®nement tests
were used to ensure the solutions were converging to
grid and timestep independent results. The calculations

displayed were obtained using a 174 by 174 grid discre-
tisation and time step of Dt �=5 � 10ÿ7H 2/n. A
stretched grid ensured that the vertical boundary layer

received the highest resolution and the Rayleigh num-
ber Ra= 5 � 109 and Prandtl number Pr = 7 are
used.

4. Stability analysis

4.1. The basic ¯ow

The transient behaviour of the ¯uid before it is
a�ected by the leading edge can be modelled as if the
plate were doubly in®nite. In this case there is no verti-

cal dependency in the ¯ow and the horizontal velocity
is zero. The continuity equation is trivially satis®ed
and the governing Eqs. (1)±(4) are reduced to,

@u�

@ t�
� n

@ 2u�

@y�2
� gb�T � ÿ T0�, �5�

@T �

@ t�
� k

@ 2T �

@y�2
: �6�

For an isothermal wall boundary condition, these

equations were ®rst solved by Illingworth [16] and
various solutions for uniform ¯ux and mixed boundary

condition are summarised from a number of sources in
Goldstein and Briggs [3]. For the case of an isothermal
boundary condition, the solution is given in terms of

Z � y�=
���������
4kt�
p

,

T � � T0 � �Th ÿ T0�erfc Z, �7�

u� � 4gbDTt�

1ÿ Pr
�i2 erfc Zÿ i2 erfc�Z=Pr1=2��: �8�

The base¯ow solutions can be non-dimensionalised by

the boundary layer thickness and the maximum vel-
ocity in the boundary layer at a time t �=t0,

d �
���������
4kt0

p
, U0 � gbDTd2=n:

The non-dimensional solutions are given by,

�u � u�=U0 � Pr

1ÿ Pr
�i2 erfc� y� ÿ i2 erfc� y=Pr1=2��, �9�

�T � �T � ÿ T0�=DT � erfc� y�, �10�

where y=y �/d.

4.2. The stability equations

The parabolized stability equations are developed

for a parallel but time-dependent buoyancy driven
boundary layer ¯ow adjacent to a heated vertical wall.
Solutions are sought to the linear stability equations
with base¯ow streamfunction and temperature ®elds

� �c � y, t�, �T � y, t�� and perturbations (c '(x, y, t ), T '(x,
y, t )),

c 0xxt � c 0yyt � c 0y �cxxx ÿ c 0x �cxxy � c 0y �c yyx

ÿ c 0x �c yyy � c 0xxx �c y ÿ c 0xxy �cx � c 0yyx �c y

ÿ c 0yyy �cx

� 1

Grt
�T 0y ÿ r4c 0�, �11�

T 0t � T 0x �c y � �Txc
0
y ÿ T 0y �cx ÿ �T

0
yc
0
x

� 1

Grt Pr
�T 0xx � T 0yy�, �12�

in which the equations have been non-dimensionalised
by the velocity, length and temperature scales, U0, d
and DT, respectively. The non-dimensional Grashof
number is de®ned by Grt=U0d/n=gbDTd 3/n 2.
Solutions for the perturbations (c ', T ') of the form,
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c 0�x, y, t� � ĉ� y, t� exp

i

 
kxÿ

�t
t0

ô �t� dt
!
� c:c:,

�13�

T 0�x, y, t� � T̂� y, t� exp

i

 
kxÿ

�t
t0

ô �t� dt
!
� c:c:,

�14�

are sought where c.c. stands for the complex conjugate

and t0 is a time after the initiation of the ¯ow at which
the analysis is performed. The perturbation is a tem-
porally evolving wave with real wavenumber k. The

®rst part of the perturbation is a complex eigenfunc-
tion �ĉ� y, t�, T̂� y, t�� that describes the variation of the
waveform in the cross-stream direction and in time.
The other part of the perturbation is an exponential

that describes the wave-like nature of the disturbance
with o i�t�, the imaginary part of ô �t�, being the expo-
nential growth rate in time and the real part of ô �t�,
or (t ), being the frequency. By analogy to the formu-
lation for the steady non-parallel ¯ow, the PSE are
then formulated from the perturbation Eqs. (11) and

(12) by neglecting all the base¯ow and perturbation
eigenfunction terms with second- and higher-order t
derivatives, as well as multiples of terms each with

®rst- or higher-order t derivatives. Justi®cation for
neglecting the higher order derivatives of the base¯ow
is based on these terms being order O(Grÿ2t ). The base-
¯ow given by Eqs. (7) and (8) obeys this criterion.

Neglecting the eigenfunction derivatives assumes that
these terms are also in order O(Grÿ2t ) and is based on
experience with non-parallel ¯ows which suggests that

the eigenfunctions behave in a similar fashion to the
base¯ow [17]. Applying these assumptions to the per-
turbation forms (13) and (14), the time derivative of

the perturbation can be written as

@c 0

@ t
�
�
�ÿiô �ĉ� @ ĉ

@ t

�
exp

i

 
kxÿ

�t
t0

ô �t� dt
!
� c:c:

�15�

@T 0

@ t
�
�
�ÿiô �T̂� @ T̂

@ t

�
exp

i

 
�kxÿ

�t
t0

ô �t� dt

!
� c:c::

�16�

Substituting the perturbation forms (15) and (16) into
the perturbation Eqs. (11) and (12) gives the non-
stationary form of the PSE

L0, 1ĉL0, 2T̂� L2, 1
@ ĉ
@ t
� 0, �17�

M0, 1ĉ�M0, 2T̂�M2, 2
@ T̂

@ t
� 0 �18�

with the di�erential operators

L0, 1 � ÿ 1

Grt
�D2 ÿ k2�2 � � �c yikÿ iô ��D2 ÿ k2�

ÿ �c yyyik,

L0, 2 � ÿ 1

Grt
D, L2, 1 � D2 ÿ k2,

M0, 1 � ÿ �Tyik,

M0, 2 � ÿ 1

Grt Pr
�D2 ÿ k2� ÿ iô � �c yik,

M2, 2 � 1,

in which D refers to di�erentiation with respect to y.
A local solution procedure is used to solve Eqs. (17)

and (18) with the base¯ow and the perturbation eigen-
function being written as Taylor series expansions

about the time t0. The assumption of a slow time vari-
ation in the base¯ow and perturbation made by the
PSE ensures that all but the ®rst two terms in the

expansion can be neglected. A normalisation condition,
ô �t� is constant, is used by analogy to the normalis-
ation condition used to derive the local PSE by

Bertolotti et al. [17] for a non-parallel boundary layer.
This method has also been used to successfully
describe the non-parallel stability in natural convection

¯ows by Brooker et al. [18]. The expansion of the per-
turbation eigenfunction is now written

ĉ� y, t� � ĉ0� y� � �tÿ t0�ĉ1� y�, �19�

T̂� y, t� � T̂0� y� � �tÿ t0�T̂1� y�, �20�

and the base¯ow

�c � y, t� � �c � y, t0� � �tÿ t0� �c t� y, t0�, �21�

�T � y, t� � �T � y, t0� � �tÿ t0� �Tt� y, t0�: �22�

Substituting these into Eqs. (17) and (18) gives the

local PSE

L0, 1ĉ0 � L0, 2T̂0 � L2, 1ĉ1 � 0, �23�
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M0, 1ĉ0 �M0, 2T̂0 �M2, 2T̂1 � 0, �24�

L0, 1ĉ1 � L0, 2T̂1 � L4, 1ĉ0 � 0, �25�

M0, 1ĉ1 �M0, 2T̂1 �M4, 1ĉ0 �M4, 2T̂0 � 0: �26�

The additional di�erential operators are

L4, 1 � �c yt�ikD2 ÿ ik3� ÿ �c yyytik,

M4, 1 � ÿ �Tytik, M4, 2 � �c ytik:

The base¯ow ®elds ( �c , T
-
) are evaluated at t �=t0 and,

given appropriate boundary conditions determined by
the particular base¯ow under consideration, the eigen-
value problem can then be solved.

Since the perturbation is divided into two functions,
both containing t, a plane wave solution with a
straight-forward de®nition of the frequency and tem-

poral ampli®cation as the gradient of the phase does
not exist. The value for ô represents only one com-
ponent of the physical ampli®cation and frequency,

de®ned respectively as the real and imaginary parts of
the downstream gradient of the perturbation, normal-
ised by the perturbation. The physical frequency and

ampli®cation are the sum of two components, one aris-
ing from the exponential term and the other from the
time dependence in the eigenfunction. Using the non-
stationary formulation, the temporal ampli®cation a s

q

and frequency o s
q at a time t0 and for a ¯ow variable

q are de®ned by

asq� y, t0� � o i�t0� � Re

�
q̂1� y, t0�
q̂0� y, t0�

�
, �27�

o s
q� y, t0� � o r�t0� � I

�
q̂1� y, t0�
q̂0� y, t0�

�
: �28�

Clearly, the ampli®cation and frequency depend on the
component of the perturbation taken. For example,
di�erent values will result for the temperature com-

ponent vs the velocity components.
The Orr±Sommerfeld equations are simply the PSE

where all base¯ow and perturbation terms of order
O(Grÿ1t ) have been neglected,

L0, 1ĉ0 � L0, 2T̂0 � 0, �29�

M0, 1ĉ0 �M0, 2T̂0 � 0: �30�
The stability equations are subject to homogeneous

boundary conditions for c ', c 'y and T ' on the hot wall
at y = 0 and also at y=1. They are solved using a
straightforward shooting method with orthonormalis-

ation [19] that simultaneously solves for the eigenfunc-
tions ĉ0, ĉ1, TÃ0 and TÃ1 and the complex eigenvalue ô ,

for a given wavenumber k, and time t0.

5. Results

The results are separated into those dealing with ran-
dom disturbances and those with discrete wavelength

disturbances. In Section 5.1, random perturbations are
examined. In the experimental situation the random per-
turbations are introduced through unavoidable vi-
brations that occur through the startup process and

through inhomogeneities in the boundary conditions. In
the numerical simulation the perturbations are intro-
duced through thermal perturbations at the hot wall.

The introduction of random disturbances results in the
ampli®cation of a broad range of wavenumbers in each
case. The resulting disturbances to the ¯uid temperature

®eld are then compared to the results of quasi-stationary
linear stability analysis using the OSE. In Section 5.2
disturbances are introduced into the numerical simu-
lation with discrete wavenumbers. The resultant wave

structures are then compared to solutions of the non-
stationary parabolized stability equations.

5.1. Random perturbations

To investigate the e�ect of perturbations to the wall

boundary conditions, simulating natural disturbances
present in an experimental rig, random perturbations
were introduced into the governing Eqs. (1)±(4)

through the heat source term S �. Heat sources with
randomly distributed amplitudes were continuously
introduced into the grid cells adjacent to the wall. The
heat source term S � was non-zero in the region

0 < xc < 1, 0 < yc < 1 � 10ÿ4, where

S �H
nDT

� ArR�x i, yj, tk�: �31�

R is an evenly distributed random value between ÿ1
and 1, and xi, yj and tk are the discrete points in space
and time. The perturbations therefore do not have a

natural frequency or wavelength other than those as-
sociated with the discretisation. Fig. 1(a)±(c) shows the
temperature isotherms in the region close to the wall
when a perturbation with amplitude Ar=400 is added

to the ¯ow. The temperature ®elds at the three times
tc=4.7 � 10ÿ5, tc=9.4 � 10ÿ5 and tc=14.1 � 10ÿ5 are
shown. The corresponding temperature ®elds where no

perturbation is added are shown in Fig. 1(d)±(f). The
region of parallel isolines clearly de®nes the area of
one-dimensional ¯ow that is well described by the

explicit solution, Eq. (7). Since the perturbation is con-
tinuously applied in the grid cells immediately adjacent
to the vertical wall, the grid scale ¯uctuations can be
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seen in the T = 0.9 isotherm nearest the wall.

However, away from the wall the ¯ow itself selects the
disturbance wavelengths that are observed.

A time series of the temperature at a point within

the ¯ow allows an insight into the frequency response
of the ¯ow. Fig. 2 shows the simulated temperature

series for both the perturbed and unperturbed ¯ow at
heights xc=0.454 and xc=0.715 and at a distance

yc=3.9 � 10ÿ3 from the wall. The unperturbed tem-

peratures are shown by the solid lines and the per-
turbed temperatures by the dashed and dotted lines.

The progress of the leading edge e�ect in the unper-
turbed simulation can be traced by the deviation of the

temperature signal from the one-dimensional ¯ow sol-

ution at height xc=0.951. The leading edge e�ect
reaches the height xc=0.454 by tc=0.9 � 10ÿ4 and the

height xc=0.715 by tc=1.2 � 10ÿ4.
We now consider the experimental results. The exper-

iments were conducted with water as the working ¯uid.

The mean temperature was T0=20.78C giving a Prandtl
number of Pr = 6.25. The temperature of the heated

vertical side wall was maintained at 6.38C above that

of the initial temperature corresponding to a Rayleigh
number of 1.6 � 109. In Fig. 3(a)±(c) a selection of

Fig. 1. Simulated temperature isolines with disturbance levels

A= 400 in (a)±(c) and A= 0 in (d)±(f) at times

tc=4.7 � 10ÿ5 (a, d), tc=9.4 � 10ÿ5 (b), (c), and

tc=14.1 � 10ÿ5 (c), (f). In each case the highest temperature

isoline, T = 0.9, is that closest to the vertical wall, yc=0, and

the subsequent isolines decrease in increments of 0.1 towards

the right.

Fig. 2. The temperature at yc=3.9 � 10ÿ3 and heights

xc=0.454, xc=0.715 and xc=0.951 in an unperturbed simu-

lation (solid lines) and at xc=0.454 (dashed line) and

xc=0.715 (dotted line) in a perturbed simulation.

Fig. 3. Thermistor temperature measurement at locations (x �,
y �) (a) (11.75, 0.2 cm), (b) (13.95, 0.3 cm) and (c) (16.65,

0.3 cm) as a function of time t0. The temperatures from a per-

turbed numerical simulation at the equivalent locations (xc,

yc) in a Ra= 5 � 109 cavity at (d) (0.34, 5 � 10ÿ3), (e) (0.40,
9 � 10ÿ3) and (f) (0.48, 9 � 10ÿ3).
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thermistor temperature measurements are shown. The

thermistor measurements were made at heights above
the leading edge and distances out from the wall of
(11.75, 0.2 cm), (13.95, 0.3 cm) and (16.65, 0.3 cm). To

facilitate comparison to the numerical simulations the
non-dimensional time, t0=t �(( gbDT )2/n )1/3 is used.
The experimental results allow a direct comparison

between the temperature signal evolving from natural
disturbances with the simulation results with random

disturbances. Figs. 3(d)±(f) show the temperatures cal-
culated at equivalent locations in a perturbed cavity
simulation. The perturbation amplitude Ar=800 was

used with Ra= 5 � 109 and Prandtl number
Pr = 6.25. Note that here the Prandtl number was

chosen to match the experimental situation whereas
the Prandtl number Pr= 7 is used in all other simu-
lations. It is not required for the computational

Rayleigh number to match the experiment since the
one-dimensional ¯ow regime, Eqs. (7) and (8) is not
Rayleigh number dependent.

The main features of the thermistor signals are now
described with reference to Fig. 3(c). The ¯ow is essen-

tially in the one-dimensional regime from t0=0 to
t0=70. From t0=70 to t0=220 there occurs a tran-
sition region which is associated with the in¯uence of

the leading edge of the heated surface. The features of
the transition regime are an overshoot maximum
which occurs at t0=95 and a following wave packet.

These features have been described previously in
Arm®eld and Patterson [20]. After t0=220 a steady

¯ow regime exists. These same features can be ident-
i®ed in the equivalent numerical simulation in Fig.
3(f). In this study the important features to note are

the wave structures moving up the plate that are
observed during the one-dimensional ¯ow region and
into the overshoot region. Note that in the absence of

external perturbations that no oscillations are seen in
these regions as shown by the solid curve at xc=0.454

in Fig. 2. Wave structures in these regions are seen in
both the experiment and the perturbed numerical simu-
lation. The disturbance level A= 800 has been chosen

to approximately match the amplitudes of these dis-
turbances to the experiment. Given that no e�ort has
been made to realistically imitate the actual disturb-

ance structure of the experiments the agreement
between experiment and numerical simulation is

remarkable.
The random perturbations introduced into the ¯ow

are ®rst damped and then ampli®ed. After some time,

the more rapidly ampli®ed wavelengths begin to domi-
nate the response. The ¯ow domain and time period in

which the one-dimensional ¯ow exists in the cavity
simulation is only of the order of a few wavelengths
and periods on the instability. This precludes an analy-

sis of the instability waves by Fourier transform
methods. However, by measuring the wavelength and

period of individual waves, the range of wave proper-
ties can be ascertained. The wavenumbers observed in

the numerical simulation at several times are shown as
the � symbols in Fig. 4. The wavenumber k0 is presen-
ted in the non-dimensional form k0=k �(n/gbDT )1/3.

The wavenumbers have been ascertained from the nu-
merical solution at times which correspond to Grashof
number values of Grt=155, 280, 430. Several values

are shown at each time referring to the values ascer-
tained for the individual waveforms available at each
time. These wavenumbers are now compared to the

ampli®cation rates for a range of wavenumbers calcu-
lated from the Orr±Sommerfeld Eqs. (29) and (30)
with the base¯ow given by the one-dimensional sol-
ution, Eqs. (7) and (8). The ampli®cation rate, o0i is

presented in the non-dimensional form
o0i=ÿo �i (( gbDT )2/n )1/3. Hence a positive o0i implies
a temporal growth. The isolines of the ampli®cation

rate are shown in Fig. 4. The observed wavenumbers
lie above the maximally ampli®ed wavenumbers and at
Grt=430 the mean observed wavenumber is approxi-

mately double that of the wavenumber with the highest
ampli®cation rate determined from the OSE.

5.2. Direct stability analysis

Direct stability analysis was carried out by introdu-
cing arti®cial disturbances with a discrete wavenumber

source at an instant in time. The stability of the ¯ow
to forcing with individual wavenumber components is
then examined and the temporal signalling problem is

solved completely numerically. Since the solution
utilises the full Navier±Stokes and energy equations,
all possible non-stationary e�ects are incorporated in

the analysis. In this case, the heat source term S � is
non-zero in the region 0 < xc < 1, 0 < yc < 2 � 10ÿ4

and for the ®rst timestep 0 < tc < 1.25 � 10ÿ7 where

S �H
nDT

� A sin

�
2pxc

lc

�
: �32�

The amplitude of the imposed perturbation A was

chosen such that the resultant wave remained almost
linear. Linearity was tested by checking that the maxi-
mum amplitude of the perturbation in the boundary
layer was proportional to A and the growth rates were

independent of the wave amplitude. The value A= 40
was used in the simulations shown.
Fig. 5 shows the temperature and vertical velocity

perturbation ®elds calculated for an input wavelength
lc=0.1. The perturbation ®elds are de®ned by
T(lc)ÿT1D and U(lc)ÿU1D, where T(lc) and U(lc) are

the temperature and velocity ®elds calculated with the
input wavelength lc, and T1D and U1D are the simu-
lated ®elds where there is zero input disturbance. The
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perturbation ®elds are shown at the times

tc=2.38 � 10ÿ5, tc=4.62 � 10ÿ5 and tc=9.75 � 10ÿ5.
Since the cavity is limited by the top and bottom

walls and the disturbance in the cavity can only be

imposed over a ®nite region, the discontinuity of the
input disturbance at the top and bottom walls creates
wavepacket-like disturbances. The base¯ow rapidly

damps any disturbance once it reaches the top wall.
Hence, the wavepacket emanating from the top wall is
not discernible. The wavepacket emanating from the
bottom discontinuity is evident in the perturbation

®elds. In Figs. 5(c) and (f) the wavepacket can be seen
in the decay of the perturbation ®elds below xc=0.35.
The relevant wave properties were ascertained by

calculating the wave amplitudes at any given instant in
time from the series of waves travelling along the one-
dimensional ¯ow. Hence the amplitude for a given

¯ow variable q is de®ned as

Aq� y, t� � �q�x, t, t� ÿ q�x, y, t��21=2 �33�

where the overbar refers to the spatial mean over sev-
eral wave periods in the vertical direction. Care was
taken to ensure that the integration was carried out

only over a region where the waveform is invariant in

the vertical direction, thereby avoiding contamination
from the wavepacket regions. The temporal ampli®-
cation rate calculated from the direct stability analysis

is then

aDq � y, t� �
1

Aq� y, t�
@

@ t
Aq� y, t�: �34�

The temperature and vertical velocity amplitudes AT

and AU for the input wavelength lc=0.1 are shown in
Fig. 6. The peak temperature amplitude decreases

rapidly from time tc=0 to tc=2.5 � 10ÿ5 after which
the amplitude is relatively constant and then steadily
increasing from tc=4.5 � 10ÿ5. The vertical velocity
amplitude does not display the same rapid initial decay

as the temperature signal. This is due to the disturb-
ance being introduced into the heat equation ex-
clusively. It is clear that some time is required for the

vertical velocity perturbation to reach equilibrium with
the temperature signal.
The calculation of a net ampli®cation rate from the

PSE solutions allows a comparison to the solution of
the OSE. The e�ect of the stationary ¯ow assumption
can then be ascertained. The OSE ampli®cation rate,

Fig. 4. Isolines of the ampli®cation rate o0i. The
� symbols indicate the wavenumbers observed in a perturbed simulation.
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o0i, at Grt=295 is shown by the solid curve in Fig.

7(a). The net ampli®cation rates for the temperature
a s
T and vertical velocity a s

U, calculated from Eq. (27)

are shown by the dotted and dashed lines, respectively.

The integrated ampli®cation rates, aD
U, and aD

T, from
direct analysis Eq. (34) are shown by the + sign for

the vertical velocity by the circles for the temperature.
The PSE correctly predicts that the temperature signal

is ampli®ed more rapidly than the velocity signal. It

also shows that the maximally ampli®ed wavenumber
may be marginally higher than that predicted by the

OSE. Fig. 7(b) shows the PSE net ampli®cations and
the OSE ampli®cation at Grt=95. Here the PSE tem-

perature ampli®cation is again higher than the vertical

velocity ampli®cation and the maximum of the tem-
perature ampli®cation is at a higher wavenumber.

6. Discussion

The experimentally observed oscillations that occur

before the arrival of the wavepacket are qualitatively
similar to those in the numerical simulations. Although

some discrepancy is observed between the signals in

the furthest downstream location, the spatial inhom-
ogeneity of the disturbance level in the experiment

may result in the larger amplitude in the oscillations at
this height. It is also noted that the disturbance ampli-

tude on the steady ¯ow is higher in the simulation

than in the experiment. The disturbance level in the ex-
periment may not be homogeneous in time as it was in

the simulation. In particular the experimental disturb-

ance level is likely to be higher at the start-up of the
¯ow caused by the method of suddenly ¯ushing the

Fig. 5. The temperature perturbation ®elds T(lc, tc)ÿT1D (tc) for (a) tc=2.38 � 10ÿ5, (b) tc=4.62 � 10ÿ5 and (c) tc=9.75 � 10ÿ5

and the vertical velocity perturbation ®elds U(lc, tc)ÿU1D (tc) at times (d) tc=2.38 � 10ÿ5, (e) tc=4.62 � 10ÿ5 and (f)

tc=9.75 � 10ÿ5 each for the wavelength lc=0.1. The contour intervals drawn in each case are: (0, 20.25, 20.5, 20.75, 21) � ;

1.1 � 10ÿ3 (a); 1.2 � 10ÿ3 (b); 4.5 � 10ÿ3 (c); 3.8 (d); 4.1 (e); 13.5 (f).
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outside of the vertical walls to achieve an instan-
taneous change in wall temperature.

Direct numerical simulation of the one-dimensional
¯ow with small random heat source perturbations has

con®rmed that the instability of the ¯ow can be re-
sponsible for the breakdown of the one-dimensional
¯ow before the arrival of the leading edge e�ect. The

observed wavelengths resulting from random disturb-
ances are, on average, 50% shorter than those pre-

dicted from the OSE as the most rapidly ampli®ed. A
similar trend was observed for the ¯ux condition by
Krane and Gebhart [11]. However, the comparison

between the wavelength at the maximum of the ampli-
®cation rate and the observed wavelength is inap-

propriate. The waves evolving on the one-dimensional
¯ow from a random source can be considered as a col-

lection of waves with all possible wavenumbers. This is
di�erent from the case for steady ¯ows, where the
evolution of natural disturbances is considered as a

collection of waves with all possible frequencies.
Indeed, for a parallel and temporally evolving ¯ow,

the concept of a wave with a single constant frequency
is meaningless. Viewing the disturbance as a collection
of waves with all possible wavenumbers, the dominant

wavenumber at any given time is then given by the one
with the highest amplitude at that point calculated by
integrating the growth rate in time.

Assuming the amplitude of the wave at time t0 is 1
then the logarithm of the amplitude at any time later
can be calculated by integrating the ampli®cation rate

in time. The amplitude for each wavenumber is de®ned
as e B where

B�k0, Grt� �
�Grt
Grt0

o 0i�G � dG,

and o0i is the ampli®cation rate determined from the
OSE. Since the OSE is unreliable for low Grashof
numbers, the integration is carried out from Grt0=35.

Fig. 8 shows the isolines of B calculated using the
ampli®cation rate o0i in Fig. 4. The simulation wave-
numbers are again shown by the � symbols. The maxi-

Fig. 6. (a) The temperature disturbance amplitude AT ( yc, tc) for an input wavelength lc=0.1 with contours drawn at (1, 4, 9, 16,

25, 36, 49) � 2.2 � 10ÿ4 (b) The vertical velocity disturbance amplitude AU ( yc, tc) for an input wavelength lc=0.1 with contours

drawn at (1, 4, 9, 16, 25, 36, 49) � 1.76 � 10ÿ1.
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mum of the amplitude B occurs at a higher wavenum-

ber than the wavenumber at which the maximum in

the ampli®cation rate occurs.

Fig. 9 shows the local ampli®cation rate o0i and the

amplitude B at the Grashof numbers Grt=155,

Grt=280 and Grt=430 as functions of the local fre-

quency o0r. The maximally ampli®ed frequency varies

little over the times shown and is around o0r=0.25.

This frequency lies well below the observed frequencies

at each time depicted by the vertical dashed lines. The

Fig. 7. The net ampli®cation rate derived from the OSE (solid line), the PSE for the temperature signal (dotted line) and the PSE

for the vertical velocity signal (dashed line) at (a) Grt=295 and (b) Grt=95. The circles indicate the net temperature ampli®cation

and the + signs the net vertical velocity ampli®cation from direct analysis.
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Fig. 8. Isolines of the integrated amplitude B. The � symbols indicate the wavenumbers observed in a perturbed simulation.

Fig. 9. (a) The ampli®cation o0i as a function of the frequency o0r calculated from the OSE at (a) Grt=155, (b) Grt=280 and (c)

Grt=430. The integrated amplitude B as a function of the frequency at (d) Grt=155, (e) Grt=280 and (f) Grt=430. The dashed

lines indicate the frequencies observed in a perturbed simulation.



frequency at the maximum of the amplitude B
increases slowly with time from o0r=0.28 at Grt=155

to o0r=0.34 at Grt=430.
The observed wavenumbers and frequencies still

occur above those predicted by the maximum of the

integrated amplitude. Two further factors may have
in¯uenced this result. Firstly, the rapid decay of the
instability for Grt < 35 is likely to further increase the

maximally ampli®ed wavenumber. Secondly, the net
ampli®cation rate predicted using a local solution to
the non-stationary PSE is greater than that by the

OSE and the temperature signal is ampli®ed at a
higher rate than the vertical velocity signal. These
di�erences are con®rmed by the direct stability analy-
sis. Hence the PSE results indicate that the non-

stationary e�ect is to increase the ampli®cation rate at
higher wavenumbers.
Direct numerical simulation of the evolution of an

instantaneous disturbance with a single discrete wave-
length imposed on the one-dimensional ¯ow has con-
®rmed the fundamental result of the temporal

signalling problem that the disturbance evolves main-
taining the imposed wavelength. This direct stability
analysis of the one-dimensional ¯ow has established

the feasibility of studying the stability of parallel ¯ows
by examining the temporal signalling problem. The
method of direct stability analysis employed here used
a heat source to initiate the disturbance. Using this

source for the initial disturbance, the evolving pertur-
bation does not attain an equilibrium between the dis-
turbance to the temperature ®eld and that of the

momentum ®eld until at least Grt=50. The e�ect of
introducing the disturbance through the momentum
equation or through a combination of momentum and

heat sources has not been investigated but appears to
be a route through which the stability properties at
lower Grt could be obtained.
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